Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.055
Filtrar
1.
Front Plant Sci ; 15: 1369658, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562559

RESUMEN

Introduction: Lettuce production and quality could be seriously affected by the increasingly limited water resources. Methods: The effect of drought on the content of two antioxidant compounds, vitamin C and anthocyanins, in five cultivated lettuces and two wild relatives was assessed for 2 years. Results and discusion: In leaf samples, Lactuca wild species generally had a higher content of total vitamin C than the cultivated lettuces. In contrast, the commercial varieties usually contained more total anthocyanins than the wild species. Total vitamin C decreased with the drought stress in all accessions, commercial varieties, and lettuce wild relatives, with this tendency being consistent and reproducible across the 2 years. These differences were significant in the case of the green commercial varieties 'Winter Crop' (in 2020/2021) and 'Dolomiti G12' (in 2021/2022) and very significant in the red commercial variety 'Red Sails' (in 2020/2021). However, the only group in which the effect of drought was either significant or very significant in both years was the wild species, Lactuca homblei and Lactuca dregeana, and in the latter also in both tissues (leaf and stem) analyzed. Water stress resulted in an increase of the total anthocyanin content in the leaves from all the accessions, both red commercial varieties and wild relatives, in both years. The most significant enrichment and the only one being either significant or very significant in both years was observed in one of the wild relatives assayed (L. homblei). Stems (L. dregeana) contained more anthocyanins than leaves under control conditions, and it was exactly the opposite under drought. Changes in anthocyanins in the two tissues in response to drought stress were in opposite directions, increasing in leaves and decreasing in stems. This could suggest a translocation of anthocyanins as a first quick mechanism to cope with a severe lack of water. In conclusion, anthocyanins (unlike vitamin C) could play a role in the mechanisms deployed by the plant to tolerate drought stress. The wild species with a robust significant enrichment in anthocyanins as a response to drought (L. homblei) is a promising plant material to breed more resilient lettuces.

2.
Phytother Res ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38595123

RESUMEN

Insomnia affects millions of people worldwide, prompting considerable interest in herbal remedies for its treatment. This review aims to assess the therapeutic potential of such remedies for insomnia by analyzing current scientific evidence. The analysis identified several herbs, including Rosmarinus officinalis, Crocus sativus, Rosa damascena, Curcuma longa, Valeriana officinalis, Lactuca sativa, Portulaca oleracea, Citrus aurantium, Lippia citriodora, and Melissa officinalis, which show promise in improving overall sleep time, reducing sleep latency, and enhancing sleep quality. These plants act on the central nervous system, particularly the serotonergic and gamma-aminobutyric acid (GABA)ergic systems, promoting sedation and relaxation. However, further research is necessary to fully understand their mechanisms of action, optimal dosages, and treatment protocols. Combining herbal medicines with conventional treatments may offer an effective natural alternative for those seeking medication. Nevertheless, individuals should consult their healthcare provider before using herbal remedies for insomnia. While this review provides evidence supporting their use, additional high-quality studies are needed to firmly establish their clinical efficacy.

3.
Front Plant Sci ; 15: 1370495, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567141

RESUMEN

Introduction: Wildlife feces can contaminate vegetables when enteric bacteria are released by rain and splashed onto crops. Regulations require growers to identify and not harvest produce that is likely contaminated, but U.S. federal standards do not define dimensions for no-harvest zones. Moreover, mulching, used to retain soil moisture and maximize crop yield may impact rain-mediated bacterial dispersal from feces. Methods: To assess Escherichia coli dissemination from a fecal point source to lettuce grown on various mulches, lettuce cv. 'Magenta' was transplanted into raised beds with plastic, biodegradable plastic, straw, or left uncovered at field sites in Maryland and Georgia. Eleven days post-transplant, 10 g of rabbit manure spiked with ~8 log CFU g-1 E. coli were deposited in each bed. One day following natural or simulated rain events, lettuce was sampled along 1.5 m transects on either side of fecal deposits. Lettuce-associated E. coli was semi-quantified with an MPN assay and dependence on fecal age (stale or fresh), lettuce age (baby leaf or mature head), distance from point source, mulch and post-rain days were statistically evaluated. Results: Distance (p<0.001), fecal age (p<0.001) and mulch (p<0.01) were factors for E. coli transfer from point source to lettuce. The highest and lowest E. coli estimates were measured from lettuce grown on biodegradable plastic and straw, respectively, with a 2-log MPN difference (p<0.001). Mulch and distance were also significant factors in E. coli recovery 3 days post-rain (both p<0.001), where plastic mulches differed from bare ground and straw (p<0.01). For all treatments, fewer E. coli were retrieved from lettuce at 0.3 m, 3 days post-rain compared to 1 day (p<0.001). Fitting the data to a Weibull Model predicated that a 7-log reduction in E. coli from fecal levels would be achieved at 1.2-1.4 m from the point source on plastic mulches, 0.75 m on bare soil (p<0.05) and 0.43 m on straw (p<0.01). Discussion: Straw and bare ground limited rain-mediated E. coli dispersal from feces to lettuce compared to plastic mulches. Fecal age was negatively associated with E. coli dispersal. These findings can inform harvesting recommendations for measures related to animal intrusion in vegetable production areas.

4.
Environ Res ; 252(Pt 1): 118845, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570128

RESUMEN

In recent years, precision agriculture, driven by scientific monitoring, precise management, and efficient use of agricultural resources, has become the direction for future agricultural development. The precise identification and assessment of phenotypes, which serve as external representations of a crop's growth, development, and genetic characteristics, are crucial for the realization of precision agriculture. Applications surrounding phenotypic indices also provide significant technical support for optimizing crop cultivation management and advancing smart agriculture, contributing to the efficient and high-quality development of precision agriculture.This paper focuses on lettuce and employs common nutritional stress conditions during growth as experimental settings. By collecting RGB images throughout the lettuce's complete growth cycle, we developed a deep learning-based computational model to tackle key issues in the lettuce's growth and precisely identify and assess phenotypic indices. We discovered that some phenotypic indices, including custom ones defined in this study, are representative of the lettuce's growth status. By dynamically monitoring the changes in phenotypic traits during growth, we quantitatively analyzed the accumulation and evolution of phenotypic indices across different growth stages. On this basis, a predictive model for lettuce growth and development was trained.The model incorporates MSE, SSIM, and perceptual loss, significantly enhancing the predictive accuracy of the lettuce growth images and phenotypic indices. The model trained with the reconstructed loss function outperforms the original model, with the SSIM and PSNR improving by 1.33% and 10.32%, respectively. The model also demonstrates high accuracy in predicting lettuce phenotypic indices, with an average error less than 0.55% for geometric indices and less than 1.7% for color and texture indices. Ultimately, it achieves intelligent monitoring and management throughout the lettuce's life cycle, providing technical support for high-quality and efficient lettuce production.

5.
Plants (Basel) ; 13(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611447

RESUMEN

The use of biostimulants is becoming a useful tool for increasing crop productivity while enhancing nutritional quality. However, new studies are necessary to confirm that the joint application of different types of biostimulants, together with bioactive compounds, is effective and not harmful to plants. This study examined the impact of applying the biostimulant Green Leaves, comprising Macrocystis algae extract and containing a mixture of amino acids, corn steep liquor extract, calcium, and the bioactive compound glycine betaine. The effect of applying two different doses (3 and 5 mL L-1) of this biostimulant was evaluated on lettuce plants, and growth and quality parameters were analyzed along with photosynthetic efficiency, nutritional status, and nutrient efficiency parameters. The application of Green Leaves improved plant weight (25%) and leaf area and enhanced the photosynthetic rate, the accumulation of soluble sugars and proteins, and the agronomic efficiency of all essential nutrients. The 3 mL L-1 dose improved the nutritional quality of lettuce plants, improving the concentration of phenolic compounds and ascorbate and the antioxidant capacity and reducing NO3- accumulation. The 5 mL L-1 dose improved the absorption of most nutrients, especially N, which reduced the need for fertilizers, thus reducing costs and environmental impact. In short, the Green Leaves product has been identified as a useful product for obtaining higher yield and better quality.

6.
Polymers (Basel) ; 16(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38611272

RESUMEN

Numerous research showed that mulching with conventional agro foils elevates soil temperature and promotes plant growth, but negatively influences soil health and brings environmental concerns. Most of the published research on nonwoven mulches for plant cultivation includes nonwoven fabrics produced by extrusion processes providing nonwoven fabric structures similar to films. A limited number of studies investigate the impact of nonwoven mulches produced by a mechanical process on the cards and bonded by needling on plant cultivation. For this study, nonwoven mulches of mass per unit area of 400 g m-2 made from jute, hemp, viscose (CV), and polylactide (PLA) fibers were produced on the card bonded by needle punching. The field experiment was conducted two consecutive years in a row, in spring 2022 and 2023, by planting lettuce seedlings. The nonwoven mulches maintain lower temperatures and higher soil moisture levels compared to agro foil and the control field. The fibrous structure and their water absorption properties allow natural ventilation, regulating temperatures and retaining moisture of soil, consequently improving soil quality, lettuce yield, and quality. The fiber type from which the mulches were produced, influenced soil temperature and humidity, soil quality, and lettuce cultivation. The nonwoven mulches were successful in weed control concerning the weediness of the control field. Based on the obtained results, the newly produced mulches are likely to yield better results when used for the cultivation of vegetables with longer growing periods. Newly produced biodegradable nonwoven mulches could be an eco-friendly alternative to traditional agro foil, minimizing environmental harm during decomposition. The obtained results suggest that the newly produced mulches would be even more suitable for growing vegetables with longer growing seasons.

7.
Plants (Basel) ; 13(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38611544

RESUMEN

Menthyl ester of valine (MV) has been developed as a plant defense potentiator to induce pest resistance in crops. In this study, we attempted to establish MV hydrochloride (MV-HCl) in lettuce and tomato crops. When MV-HCl solutions were used to treat soil or leaves of potted tomato and lettuce plants, 1 µM MV-HCl solution applied to potted plant soil was most effective in increasing the transcript level of defense genes such as pathogenesis-related 1 (PR1). As a result, leaf damage caused by Spodoptera litura and oviposition by Tetranychus urticae were significantly reduced. In addition, MV-HCl-treated plants showed an increased ability to attract Phytoseiulus persimilis, a predatory mite of T. urticae, when they were attacked by T. urticae. Overall, our findings showed that MV-HCl is likely to be effective in promoting not only direct defense by activating defense genes, but also indirect defense mediated by herbivore-induced plant volatiles. Moreover, based on the results of the sustainability of PR1 expression in tomato plants treated with MV-HCl every 3 days, field trials were conducted and showed a 70% reduction in natural leaf damage. Our results suggest a practical approach to promoting organic tomato and lettuce production using this new plant defense potentiator.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38616549

RESUMEN

This study, investigated the concentrations of cadmium, lead and arsenic in vegetables grown with irrigation and sold in Sabon gari and Samaru markets in Zaria, Nigeria. Cadmium was absent in amaranthus, pepper and tomatoes purchased from Samaru market. Nevertheless, amaranthus and lettuce had higher concentrations of these toxic metals than pepper. Total arsenic concentrations in the investigated vegetables were higher than the maximum levels set by the World Health Organization. Total daily intake of the metals was higher than the maximum levels for consuming vegetables from these markets. Therefore, individuals who consume these foods may be at risk. These results indicate the possibility of toxic metal contamination in vegetables purchased from Zaria markets.

9.
J Med Food ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38603571

RESUMEN

We investigated the effects of Lactuca sativa L. extracts (Lactuc) on pentobarbital-induced sleep in mice to elucidate the mechanisms underlying its impact on sleep quality. Mice were randomly assigned to five groups: control, positive control (diazepam 2 mg/kg b.w.), and three groups orally administered with Lactuc (50, 100, and 200 mg/kg b.w.). After 2 weeks of oral administration and intraperitoneal injections, the mice were killed. We found that the Lactuc-administered groups had significantly reduced sleep latency and increased sleep duration compared with the control group. Furthermore, the oral administration of Lactuc induced a significant increase in mRNA expression and protein expression of adenosine A1 receptor in the brains compared with the expressions in the control group. In addition, the Lactuc-administered groups exhibited significantly higher levels of mRNA expressions of GABAA receptors subunits α2, ß2, γ1, and, γ2 in the brain tissue. Therefore, we suggest that Lactuc could be used to develop natural products that effectively improve sleep quality and duration.

10.
Plants (Basel) ; 13(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38592897

RESUMEN

When optimizing irrigation methods, much consideration is given to crop growth indicators while less attention has been paid to soil's gaseous carbon (C) and nitrogen (N) emission indicators. Therefore, adopting an irrigation practice that can reduce emissions while maintaining crop yield and quality is of great interest. Thus, open-field experiments were conducted from September 2020 to January 2022 using a single-factor randomized block design with three replications. The lettuce plants ("Feiqiao Lettuce No.1") were grown using four different irrigation methods established by setting the lower limit of drip irrigation to 75%, 65%, and 55% of soil water content at field capacity corresponding to DR1, DR2, and DR3, respectively. Furrow irrigation (FI) was used as a control. Crop growth indicators and soil gas emissions were observed. Results showed that the mean lettuce yield under DR1 (64,500 kg/ha) was the highest, and it was lower under DR3 and FI. The lettuces under DR3 showed greater concentrations of crude fiber, vitamin C, and soluble sugar, and a greater nitrate concentration. Compared with FI, the DR treatments were more conducive to improving the comprehensive quality of lettuce, including the measured appearance and nutritional quality. Among all the irrigation methods, FI had the maximum cracking rate of lettuce, reaching 25.3%, 24.6%, and 22.7%, respectively, for the three continuous seasons. The stem cracking rates under DR2 were the lowest-only 10.1%, 14.4%, and 8.2%, respectively, which were decreased to nearly half compared with FI. The entropy model detected that the weight coefficient evaluation value of DR2 was the greatest, reaching 0.93, indicating that the DR2 method has the optimal benefits under comprehensive consideration of water saving, yield increase, quality improvement, and emission reduction.

11.
Huan Jing Ke Xue ; 45(5): 3037-3046, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629564

RESUMEN

Through lettuce potting experiments, the effects of different types of biochar (apple branch, corn straw, and modified sorghum straw biochar with phosphoric acid modification) on lettuce growth under tetracycline (TC) and copper (Cu) co-pollution were investigated. The results showed that compared with those under CK, the addition of biochar treatment significantly increased the plant height, root length, shoot fresh weight, and root fresh weight of lettuce (P < 0.05). The addition of different biochars significantly increased the nitrate nitrogen, chlorophyll, and soluble protein content in lettuce physiological indicators to varying degrees, while also significantly decreasing the levels of malondialdehyde, proline content, and catalase activity. The effects of biochar on lettuce physiological indicators were consistent during both the seedling and mature stages. Compared with those in CK, the addition of biochar resulted in varying degrees of reduction in the TC and Cu contents of both the aboveground and underground parts of lettuce. The aboveground TC and Cu levels decreased by 2.49%-92.32% and 12.79%-36.47%, respectively. The underground TC and Cu levels decreased by 12.53%-55.64% and 22.41%-42.29%, respectively. Correlation analysis showed that nitrate nitrogen, chlorophyll, and soluble protein content of lettuce were negatively correlated with TC content, whereas malondialdehyde, proline content, and catalase activity were positively correlated with TC content. The resistance genes of lettuce were positively correlated with TC content (P < 0.05). In general, modified biochar was found to be more effective in improving lettuce growth quality and reducing pollutant accumulation compared to unmodified biochar, with modified sorghum straw biochar showing the best remediation effect.


Asunto(s)
Contaminantes Ambientales , Contaminantes del Suelo , Cobre , Lechuga , Contaminantes Ambientales/análisis , Suelo , Catalasa , Nitratos/análisis , Antibacterianos , Tetraciclina/análisis , Carbón Orgánico , Contaminantes del Suelo/análisis , Clorofila/análisis , Malondialdehído , Nitrógeno/análisis , Prolina
12.
Int J Phytoremediation ; 26(6): 936-946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630443

RESUMEN

Vegetable cultivation under sewage irrigation is a common practice mostly in developing countries due to a lack of freshwater. Long-term usage provokes heavy metals accumulation in soil and ultimately hinders the growth and physiology of crop plants and deteriorates the quality of food. A study was performed to investigate the role of brassinosteroid (BRs) and silicon (Si) on lettuce, spinach, and cabbage under lead (Pb) and cadmium (Cd) contaminated sewage water. The experiment comprises three treatments (control, BRs, and Si) applied under a completely randomized design (CRD) in a growth chamber. BRs and Si application resulted in the highest increase of growth, physiology, and antioxidant enzyme activities when applied under canal water followed by distilled water and sewage water. However, BRs and Si increased the above-determined attributes under the sewage water by reducing the Pb and Cd uptake as compared to the control. It's concluded that sewerage water adversely affected the growth and development of vegetables by increasing Pb and Cd, and foliar spray of Si and BRs could have great potential to mitigate the adverse effects of heavy metals and improve the growth. The long-term alleviating effect of BRs and Si will be evaluated in the field conditions at different ecological zones.


Asunto(s)
Verduras , Aguas Residuales , Brasinoesteroides , Aguas del Alcantarillado , Cadmio , Antioxidantes , Silicio , Plomo , Biodegradación Ambiental , Agua
13.
PeerJ ; 12: e17085, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618565

RESUMEN

Background: Greenhouse vertical farming under natural sunlight is an alternative farming technique that grows crops in a stacking column and extends in a vertical direction. Sunlight availability is one of the crucial factors for crop development in vertical farming. Therefore, this investigation aimed to examine the effect of sunlight availability on lettuce growth and yields at different levels of vertical shelves. Methods: Six shelves were constructed with three levels: upper, middle and lower levels. Lettuces (Lactuca sativa L.) as 'Baby Cos' and 'Green Oak' at 14 days after sowing were planted on the three levels. The photosynthetic photon flux density (PPFD) was recorded, and the PPFD values were then converted to the daily light integral (DLI). Plant height and canopy width were measured three times at 14, 21 and 28 days after transplanting. At maturity, fresh weight (FW) was directly monitored after harvest. Results: The results showed that the highest PPFD and DLI values were found at the upper level (PPFD 697 µmol m-2 s-1 and DLI 29 mol m-2 d-1) in comparison to the middle (PPFD 391 µmol m-2 s-1 and DLI 16 mol m-2 d-1) and lower (PPFD 322 µmol m-2 s-1 and DLI 13 mol m-2 d-1) levels. The lowest plant height and canopy width values were observed on the upper levels for both lettuce varieties during the three measurement dates. The middle ('Baby Cos' = 123.8 g plant-1 and 'Green Oak' = 190.7 g plant-1) and lower ('Baby Cos' = 92.9 g plant-1 and 'Green Oak' = 203.7 g plant-1) levels had the higher values of FW in comparison to the upper level ('Baby Cos' = 84.5 g plant-1 and 'Green Oak' = 97.3 g plant-1). The values of light use efficiency (LUE) showed an increased trend from the upper to lower levels in both varieties, with values of 'Baby Cos' of 0.10 g mol-1 in the upper level, 0.28 g mol-1 in the middle level and 0.26 g mol-1 in the lower level and 'Green Oak' of 0.12 g mol-1 in the upper level, 0.44 g mol-1 in the middle level and 0.57 g mol-1 in the lower level. The findings of the study indicated the viability of utilizing vertical shelves for lettuce production.


Asunto(s)
Agricultura , Lechuga , Humanos , Lactante , Tailandia , Granjas , Productos Agrícolas
14.
New Phytol ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38584520

RESUMEN

The loss of spines is one of the most important domestication traits for lettuce (Lactuca sativa). However, the genetics and regulation of spine development in lettuce remain unclear. We examined the genetics of spines in lettuce using a segregating population derived from a cross between cultivated and wild lettuce (Lactuca serriola). A gene encoding WUSCHEL-related homeobox transcription factor, named as WOX-SPINE1 (WS1), was identified as the candidate gene controlling the spine development in lettuce, and its function on spines was verified. A CACTA transposon was found to be inserted into the first exon of the ws1 allele, knocking out its function and leading to the lack of spines in cultivated lettuce. All lettuce cultivars investigated have the nonfunctional ws1 gene, and a selection sweep was found at the WS1 locus, suggesting its important role in lettuce domestication. The expression levels of WS1 were associated with the density of spines among different accessions of wild lettuce. At least two independent loss-of-function mutations in the ws1 gene caused the loss of spines in wild lettuce. These findings provide new insights into the development of spines and facilitate the exploitation of wild genetic resources in future lettuce breeding programs.

15.
Heliyon ; 10(7): e27924, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586413

RESUMEN

Open-surfaced water sources have been used to irrigate vegetable farms in cities. Open-surface water often contains unmonitored concentrations of health-threatening contaminants that pose health risks, especially when used to produce vegetables for human consumption. However, information on levels of heavy metals and faecal coliform bacteria in such vegetables in selected sites, especially in Greater Accra Metropolitan Area (GAMA) of Ghana is rare. This study examines the levels of heavy metals and faecal coliform in two vegetables-lettuce and bell pepper - that were cultivated using open-surface wastewater from drains and constructed reservoirs at different locations of the GAMA. Using concurrent mixed methods, questionnaires were administered to 67 vegetable farmers, followed by the collection of vegetable samples from three urban farm sites, Haatso and Dzorwulu and Weija irrigation scheme site (WISS) for laboratory analysis. The concentrations of Lead (Pb), Mercury (Hg) and Cadmium (Cd) were determined using atomic absorption spectroscopy after microwave digestion of the vegetables while total faecal coliform was quantified using MacConkey-Endo broth method. The results from all three sites showed that the concentrations of Cd (=0.001 µg/mg) and Pb (=0.005 µg/mg) in lettuce were within the World Health Organization's (WHO) permissible levels. However, the Hg (≥0.309 µg/mg) and faecal coliform (>5 count/100 ml) in the vegetables from all three sites exceeded the WHO permissible limits. Therefore, consumers of vegetables from such urban farms are exposed to health risks associated with Hg and faecal coliforms. There is the need to intensify education on the health risks of consuming vegetables produced from open-surface water sources from the observed sites. The enforcement of existing phytosanitary standards to enhance food safety and the quality of urban vegetables is also recommended.

16.
Front Plant Sci ; 15: 1308553, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516663

RESUMEN

Lettuce (Lactuca sativa) germination is sensitive to environmental conditions. Recently, hydrogel has received increased attention as an alternative media to soil for seed germination. Compared to soil seeding, hydrogel-aided germination provides more controlled seeding environments. However, there are still challenges preventing hydrogel-aided seed germination from being widely used in industry production or academic studies, such as hydrogel formulation variations, seeding operation standardization, and germination evaluation. In this study, we tested how the combination of multiple environmental conditions affect lettuce seed germination time, which is measured as the time needed for the first pair of leaves to appear (leaf emergence) or, alternatively, the third leaf to appear (leaf development). We found that germination time and success rate of two lettuce varieties (Iceberg A and Butter Crunch) showed different sensitivities to pH, Hoagland formulations and concentrations, light intensity, and hydrogel content. We have conducted statistical analysis on the correlation between germination time and these environmental conditions.

17.
Environ Sci Technol ; 58(14): 6258-6273, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38450439

RESUMEN

Contamination of small-sized plastics is recognized as a factor of global change. Nanoplastics (NPs) can readily enter organisms and pose significant ecological risks. Arbuscular mycorrhizal (AM) fungi are the most ubiquitous and impactful plant symbiotic fungi, regulating essential ecological functions. Here, we first found that an AM fungus, Rhizophagus irregularis, increased lettuce shoot biomass by 25-100% when exposed to positively and negatively charged NPs vs control, although it did not increase that grown without NPs. The stress alleviation was attributed to the upregulation of gene expressions involving phytohormone signaling, cell wall metabolism, and oxidant scavenging. Using a root organ-fungus axenic growth system treated with fluorescence-labeled NPs, we subsequently revealed that the hyphae captured NPs and further delivered them to roots. NPs were observed at the hyphal cell walls, membranes, and spore walls. NPs mediated by the hyphae were localized at the root epidermis, cortex, and stele. Hyphal exudates aggregated positively charged NPs, thereby reducing their uptake due to NP aggregate formation (up to 5000 nm). This work demonstrates the critical roles of AM fungus in regulating NP behaviors and provides a potential strategy for NP risk mitigation in terrestrial ecosystems. Consequent NP-induced ecological impacts due to the affected AM fungi require further attention.


Asunto(s)
Micorrizas , Micorrizas/metabolismo , Microplásticos , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Hifa , Ecosistema , Expresión Génica
18.
Heliyon ; 10(5): e27226, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463774

RESUMEN

Cuticular waxes of plants impart tolerance to many forms of environmental stress and help shed dangerous human pathogens on edible plant parts. Although the chemical composition of waxes on a wide variety of important crops has been described, a detailed wax compositional analysis has yet to be reported for lettuce (Lactuca sativa L.), one of the most widely consumed vegetables. We present herein the leaf wax content and composition of 12 genetically diverse lettuce cultivars sampled across five time points during their vegetative growth phase in the field. Mean total leaf wax amounts across all cultivars varied little over 28 days of vegetative growth, except for a notable decrease in total waxes following a major precipitation event, presumably due to wax degradation from wind and rain. All lettuce cultivars were found to contain a unique wax composition highly enriched in 22- and 24-carbon length 1-alcohols (docosanol and tetracosanol, respectively). In our report, the dominance of these shorter chain length 1-alcohols as wax constituents represents a relatively rare phenotype in plants. The ecological significance of these dominant and relatively short 1-alcohols is still unknown. Although waxes have been a target for improvement of various crops, no such work has been reported for lettuce. This study lays the groundwork for future research that aims to integrate cuticular wax characteristics of field grown plants into the larger context of lettuce breeding and cultivar development.

19.
Microorganisms ; 12(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38543566

RESUMEN

Ionic silver (Ag+) is being investigated as a residual biocide for use in NASA spacecraft potable water systems on future crewed missions. This water will be used to irrigate future spaceflight crop production systems. We have evaluated the impact of three concentrations (31 ppb, 125 ppb, and 500 ppb) of ionic silver biocide solutions on lettuce in an arcillite (calcinated clay particle substrate) and hydroponic (substrate-less) growth setup after 28 days. Lettuce plant growth was reduced in the hydroponic samples treated with 31 ppb silver and severely stunted for samples treated at 125 ppb and 500 ppb silver. No growth defects were observed in arcillite-grown lettuce. Silver was detectable in the hydroponic-grown lettuce leaves at each concentration but was not detected in the arcillite-grown lettuce leaves. Specifically, when 125 ppb silver water was applied to a hydroponics tray, Ag+ was detected at an average amount of 7 µg/g (dry weight) in lettuce leaves. The increase in Ag+ corresponded with a decrease in several essential elements in the lettuce tissue (Ca, K, P, S). In the arcillite growth setup, silver did not impact the plant root zone microbiome in terms of alpha diversity and relative abundance between treatments and control. However, with increasing silver concentration, the alpha diversity increased in lettuce root samples and in the water from the hydroponics tray samples. The genera in the hydroponic root and water samples were similar across the silver concentrations but displayed different relative abundances. This suggests that ionic silver was acting as a selective pressure for the microbes that colonize the hydroponic water. The surviving microbes likely utilized exudates from the stunted plant roots as a carbon source. Analysis of the root-associated microbiomes in response to silver showed enrichment of metagenomic pathways associated with alternate carbon source utilization, fatty-acid synthesis, and the ppGpp (guanosine 3'-diphosphate 5'-diphosphate) stringent response global regulatory system that operates under conditions of environmental stress. Nutrient solutions containing Ag+ in concentrations greater than 31 ppb in hydroponic systems lacking cation-exchange capacity can severely impact crop production due to stunting of plant growth.

20.
Plants (Basel) ; 13(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38475498

RESUMEN

The sunlight greenhouse crops receive varies and is often insufficient for consistent year-round growth in greenhouses. Supplemental lighting is commonly applied in winter, but this practice has a significant energy cost, accounting for 10-30% of operating expenses and impacting greenhouse profitability. Greenhouse lights are traditionally adjusted based on sunlight intensity to meet crops' daily light requirements. However, if plants can withstand lower daily light integrals (DLI) after a sunny day without reducing the growth, there is potential to reduce the energy required for supplemental lighting and increase the profit. To determine whether excess light received one day can be 'carried over' to the next, we grew oakleaf lettuce (Lactuca sativa 'Green Salad Bowl' and 'Red Salad Bowl') under six lighting regimes inside a vertical farm. Plants in all treatments received an average DLI of 15 mol·m-2·d-1, but DLIs alternated from day-to-day (15/15, 17.5/12.5, 20/10, 22.5/7.5, 25/5, and 27.5/2.5 mol·m-2·d-1), resulting in DLI fluctuations from 0 to 25 mol·m-2·d-1. Plants had similar leaf area (~800 cm2/plant) and dry weight (~1.8 g/plant) when grown with DLI fluctuations from 0 to 15 mol·m-2·d-1, while higher DLI fluctuation reduced growth. To confirm this DLI "carrying-over" effect on plants grown under sunlight with supplemental light, we conducted a second study in a greenhouse with 'Green Salad Bowl' lettuce. In this study, plants were grown with five different DLI fluctuations (15/15, 16.75/13.25, 18.5/11.5, 20.25/9.75, and 22/8 mol·m-2·d-1), ranging from 0 to 14 mol·m-2·d-1, while maintaining an average DLI of 15 mol·m-2·d-1 in all the treatments. We observed similar leaf area (~750 cm2/plant) and dry weight (~1.8 g/plant) in lettuce plants grown with DLI fluctuations from 0 to 10.5 mol·m-2·d-1. Higher DLI fluctuations reduced growth. Hence, carrying excess light from a sunny to an overcast day is possible within limits. Our study concluded that the DLI requirement can be reduced by approximately 5.25 mol·m-2·d-1 on the day following a sunny day. By analyzing historical weather data from five US locations, we quantified the potential annual energy savings from incorporating this 'carrying-over DLI' concept. This approach resulted in annual energy savings of approximately 75-190 MWh/ha in greenhouse lettuce production. Such reductions in supplemental lighting energy will enhance the profitability and sustainability of the greenhouse industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...